
Using Incorrect Speculation to Prefetch Data in
 a Concurrent Multithreaded Processor

Ying Chen, Resit Sendag, and David J. Lilja
Department of Electrical and Computer Engineering

Minnesota Supercomputing Institute
University of Minnesota

200 Union St. S.E., Minneapolis, MN 55455, USA
{wildfire, rsgt, lilja}@ece.umn.edu

Abstract

Concurrent multithreaded architectures exploit both
instruction-level and thread-level parallelism through a
combination of branch prediction and thread-level control
speculation. The resulting speculative issuing of load
instructions in these architectures can significantly impact the
performance of the memory hierarchy as the system exploits
higher degrees of parallelism. In this study, we investigate the
effects of executing the mispredicted load instructions on the
cache performance of a scalable multithreaded architecture. We
show that the execution of loads from the wrongly-predicted
branch path within a thread, or from a wrongly-forked thread,
can result in an indirect prefetching effect for later correctly-
executed paths. By continuing to execute the mispredicted load
instructions even after the instruction- or thread-level control
speculation is known to be incorrect, the cache misses for the
correctly predicted paths and threads can be reduced, typically
by 42-73%. We introduce the small, fully-associative Wrong
Execution Cache (WEC) to eliminate the potential pollution that
can be caused by the execution of the mispredicted load
instructions. Our simulation results show that the WEC can
improve the performance of a concurrent multithreaded
architecture up to 18.5% on the benchmark programs tested,
with an average improvement of 9.7%, due to the reductions in
the number of cache misses.

1. Introduction

A concurrent multithreaded architecture [1] consists of a
number of thread processing elements (superscalar cores)
interconnected with some tightly-integrated communication
network [2]. Each superscalar processor core can use branch
prediction to speculatively execute instructions beyond basic
block-ending conditional branches. If a branch prediction
ultimately turns out to be incorrect, the processor state must be
restored to the state prior to the predicted branch and execution
is restarted down the correct path. Simultaneously, a concurrent
multithreaded architecture can aggressively fork speculative
successor threads to further increase the amount of parallelism

that can be exploited in an application program. If a speculated
control dependence turns out to be incorrect, the non-speculative
head thread must kill all of its speculative successor threads.

With both instruction- and thread-level control speculation, a
multithreaded architecture may issue many memory references
which turn out to be unnecessary since they are issued from what
subsequently is determined to be a mispredicted branch path or a
mispredicted thread. However, these incorrectly issued memory
references may produce an indirect prefetching effect by
bringing data or instruction lines into the cache that are needed
later by correctly-executed threads and branch paths.

Existing superscalar processors with deep pipelines and wide
issue units do allow memory references to be issued
speculatively down wrongly-predicted branch paths. However,
we go one step further and examine the effects of continuing to
execute the loads issued from both mispredicted branch paths
and mispredicted threads even after the speculative operation is
known to be incorrect. We propose the Wrong Execution Cache
(WEC) to eliminate the potential cache pollution caused by
executing the wrong-path and wrong-thread loads. This work
shows that the execution of wrong-path or wrong-thread loads
can produce a significant performance improvement with very
low overhead.

In the remainder of the paper, Section 2 presents an overview
of the superthreaded architecture [2], which is the base
architecture used for this study. Section 3 describes wrong
execution loads and the implementation of the WEC in the base
processor. Our experimental methodology is presented in
Section 4 with the corresponding results given in Section 5.
Section 6 discusses some related work and Section 7 concludes.

2. The Superthreaded Architecture

2.1. Base Architecture Model

The superthreaded architecture (STA) [2] consists of multiple
thread processing units (TUs) with each TU connected to its
successor by a unidirectional communication ring. Each TU has
its own private level-one (L1) instruction cache, L1 data cache,
program counter, register file, and execution units. The TUs
share the unified second-level (L2) cache. There also is a shared
register file that maintains some global control and lock

registers. A private memory buffer is used in each thread unit to
cache speculative stores for run-time data dependence checking.
When multiple threads are executing on an STA processor, the
oldest thread in the sequential order is called the head thread and
all other threads derived from it are called successor threads.
The program execution starts from its entry thread while all
other TUs are idle. When a parallel code region is encountered,
this thread activates its downstream thread by forking. This
forking continues until there are no idle TUs. When all TUs are
busy, the youngest thread delays forking another thread until the
head thread retires and its corresponding TU becomes idle. A
thread can be forked either speculatively or non-speculatively. A
speculatively forked thread will be aborted by its predecessor
thread if the speculative control dependence subsequently turns
out to be false.

2.2. Thread Pipelining Execution Model

The execution model for the STA architecture is thread
pipelining, which allows threads with data and control
dependences to be executed in parallel. Instead of speculating on
data dependences, the thread execution model facilitates run-
time data dependence checking for load instructions. This
approach avoids the squashing of threads caused by data
dependence violations. It also reduces the hardware complexity
of the logic needed to detect memory dependence violations
compared to some other CMA execution models [3,4]. As
shown in Figure 1 the execution of a thread is partitioned into
the continuation stage, the target-store address-generation
(TSAG) stage, the computation stage, and the write-back stage.

Continuation
Stage

TSAG Stage

Computation
Stage

Write-Back
Stage

WB_DONE flag

Fork & forward
continuation variables

TSAG_DONE flag

target store addr.

target store
addr.&data

Continuation
Stage

TSAG Stage

Computation
Stage

Write-Back
Stage

WB_DONE flag

Fork & forward
continuation variables

TSAG_DONE flag

target store addr.

target store
addr.&data

Continuation
Stage

TSAG Stage

Computation
Stage

Write-Back
Stage

Fork & forward
continuation variables

TSAG_DONE flag

target store addr.

target store
addr.&data

Thread 1

Thread 2

Thread 3

Figure 1. Thread pipelining execution model

The continuation stage computes recurrence variables (e.g.
loop index variables) needed to fork a new thread on the next
thread unit. This stage ends with a fork instruction, which
initiates a new speculative or non-speculative thread on the next
TU. An abort instruction is used to kill the successor threads
when it is determined that a speculative execution was incorrect.
Note that the continuation stages of two adjacent threads can
never overlap.

The TSAG stage computes the addresses of store instructions
on which later concurrent threads may have data dependences.
These special store instructions are called target stores and are
identified using conventional data dependence analysis. The

computed addresses are stored in the memory buffer of each TU
and are forwarded to the memory buffers of all succeeding
concurrent threads units.

The computation stage performs the actual computation of the
loop iteration. If a cross-iteration dependence is detected by
checking addresses in memory buffer [2], but the data has not
yet arrived from the upstream thread, the out-of-order
superscalar core will execute instructions that are independent of
the load operation that is waiting for the upstream data value.

In the write-back stage all the store data (including target
stores) in the memory buffer will be committed and written to
the cache memory. The write-back stages are performed in the
original program order to preserve non-speculative memory state
and to eliminate output and anti-dependences between threads.

3. The Wrong Execution Cache (WEC)

3.1. Wrong Execution

There are two types of wrong execution that can occur in a
concurrent multithreaded architecture such as the STA
processor. The first type occurs when instructions continue to be
issued down the path of what turns out to be an incorrectly-
predicted conditional branch instruction within a single thread.
We refer to this type of execution as wrong path execution. The
second type of wrong execution occurs when instructions are
executed from a thread that was speculatively forked, but is
subsequently aborted. We refer to this type of incorrect
execution as wrong thread execution. Our interest in this study is
to examine the effects on the memory hierarchy of load
instructions that are issued from both of these types of wrong
executions.

3.1.1. Wrong Path Execution

Before a branch is resolved, some load instructions on
wrongly-predicted branches may not be ready to be issued
because they are waiting either for the effective address to be
calculated or for an available memory port. In wrong path
execution, however, they are allowed to access the memory
system as soon as they are ready even though they are known to
be from the wrong path. These instructions are marked as being
from a wrong execution path when they are issued so they can
be squashed in the pipeline at the write-back stage. A wrong-
path load that is dependent upon another instruction that gets
flushed after the branch is resolved also is flushed in the same
cycle. No wrong-execution store instructions are allowed to alter
the memory system since they are known to be invalid.

An example showing the difference between traditional
speculative execution and our definition of wrong-path
execution is given in Figure 2. There are five loads (A, B, C, D,
and E) fetched down the predicted execution path. In a typical
pipelined processor, loads A and B become ready and are issued
to the memory system speculatively before the branch is
resolved. After the branch result is known to be wrong, however,
the other three loads, C, D and E, are squashed before being able
to access the memory system.

In a system with wrong-path execution, however, ready loads
are allowed to continue execution (loads C and D in Figure 2) in
addition to the speculatively executed loads (A and B). These
wrong-path loads are marked as being from the wrong path and

are squashed later in the pipeline to prevent them from altering
the destination register. However, they are allowed to access the
memory to move the value read into the upper levels of the
memory hierarchy. Since load E is not ready to execute by the
time the branch is resolved, it is squashed as soon as the branch
result is known.

Ld A
Ld B

Ld C
Ld D

Ld E

Prediction
resul t is wrong

Predic ted path

Correct path

W r o n g p a t h

Speculat ive execut ion

Wrong path execution

Not ready to be execu ted

CP

W P

Figure 2. The difference between speculative and wrong-path

execution

3.1.2. Wrong Thread Execution

When executing a loop in the normal execution mode of the
superthreaded execution model described in Section 2, the head
thread executes an abort instruction to kill all of its successor
threads when it determines that the iteration it is executing
satisfies the loop exit condition. To support wrong thread
execution in this study, however, the successor threads are
marked as wrong threads instead of killing them when the head
thread executes an abort. These specially-marked threads are not
allowed to fork new threads, yet they are allowed to continue
execution. As a result, after this parallel region completes its
normal execution, the wrong threads continue execution in
parallel with the following sequential code. Later, when the
wrong threads attempt to execute their own abort instructions,
they kill themselves before entering the write-back stage.

TU0

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

BEGIN

TU1

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

TU2

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

TU1

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

TU2

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

TU3

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

TU0

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

TU3

FORK
 .
 .
 .
 .
 .
 .
 .
 .
 .
ABORT

WTH WTH

BEGIN

Mark the successor
threads to be wrong
threads

Kill all the wrong threads
from the previous parallel
region

Wrong thread kills itsellf

Sequential Execution

Parallel Execution

Figure 3. The wrong thread execution model with four TUs

If the sequential region between two parallel regions is not
long enough for the wrong threads to determine that they are to
be aborted before the beginning of the next parallel region, the
begin instruction that initiates the next parallel region will abort
all of the still-executing wrong threads from the previous parallel
region. This modification of the begin instruction allows the
head thread to fork without stalling. Since each thread’s store
data are put in a speculative memory buffer local to each TU,
and wrong threads do not execute their write-back stages, no
stores from the wrong threads can alter the shared memory.

Figure 3 shows this wrong thread execution model with four
TUs. Note that although wrong-path and wrong-thread execution
have similarities, the main difference between them is that, once
a branch is resolved, the ready loads that are not yet ready to
execute on a wrong path are squashed, while wrong-thread loads
are allowed to continue their execution.

3.2. Operation of the WEC

The indirect prefetching effect provided by the execution of
loads down the wrong-paths and the wrong-threads may be able
to reduce the number of subsequent correct-path misses.
However, these additional wrongly-executed loads may reduce
the performance since the cache pollution caused by these loads
might offset the benefits of their indirect prefetching effect. This
cache pollution can occur when the wrong-execution loads move
blocks into the data cache that are never needed by the correct
execution path. It also is possible for the cache blocks fetched by
the wrong-execution loads to evict blocks that still are required
by the correct path. This effect is likely to be more pronounced
for low-associativity caches. In order to eliminate this cache
pollution, we introduce the Wrong-Execution Cache (WEC).

3.2.1. Basic operation of the WEC

The WEC is used to store cache blocks fetched by wrong-
execution loads separately from those fetched by loads known to
be issued from the correct path, which are stored in the regular
L1 data cache. The WEC is accessed in parallel with the L1 data
cache. Only those loads that are known to be issued from the
wrong-execution, that is, after the control speculation result is
known, are handled by the WEC. The data blocks fetched by
loads issued before the control speculation is cleared are put into
the L1 data cache. After the speculation is resolved, however, a
wrong-execution load that causes a miss in both the L1 data
cache and the WEC will cause an access to be made to the next
level memory. The required block is moved into the WEC to
eliminate any cache pollution that might be caused by the
wrong-execution load. If a load causes a miss in the L1 data
cache, but a hit in the WEC, the block is simultaneously
transferred to both the processor and the L1 data cache.

A load from the correct path that hits on a block previously
fetched by a wrong-execution load also initiates a next -line
prefetch. The block fetched by this next -line prefetch is placed
into the WEC. When a correct-execution load causes a miss, the
data block is moved into the L1 data cache instead of the WEC,
as would be done in a standard cache configuration. The WEC
also acts as a victim cache [5] by caching the blocks evicted
from the L1 cache by cache misses from the correct execution
path. In summary, the WEC is a combination of a prefetch buffer
for wrong-execution loads and a victim cache for evictions from

the L1 data cache. The operation of the WEC is summarized in
Figure 4.

Wrong thread
execution?

L1 data
cache miss?

Wrong path
execution?

NO

YES

YES

WEC miss?

Bring the block
from the next
level memory
into the WEC

Update LRU info
for the WEC

YES

NO

YES NO

L1 data
cache miss?

NO

WEC miss?

YES

Update LRU info
for the L1 data
cache

NO

NOYES

Swap the victim
block and the
WEC block.
Prefetch the next
line into the
WEC

Updata LRU info
from the L1 data
cache

Bring the block
from next level
memory into L1
data cache . Put
the victim block
into the WEC

Figure 4. Flowchart of a WEC access.

3.2.2. Incorporating the WEC into the superthreaded
architecture

Each TU in the STA used in this study has its own private L1
data cache. In addition, a private WEC is placed in parallel with
each of the L1 caches. To enforce coherence among the caches
during the execution of a parallel section of code, all possible
data dependencies in a thread's execution path are conservatively
identified. These potentially shared data items are stored in each
TU’s private speculative memory buffer until the write-back
stage is executed. Updates to shared data items made by a thread
during the execution of a parallel section of code are passed to
downstream threads via a unidirectional communication ring.

During sequential execution, a simple update protocol is used
to enforce coherence. When a cache block is updated by the
single thread executing the sequential code, all the other idle
threads that cache a copy of the same block in their L1 caches or
WECs are updated simultaneously using a shared bus. This
coherence enforcement during sequential execution creates
additional traffic on the shared bus. This traffic is directed only
to what would otherwise be idle caches, however, and does not
introduce any additional delays.

4. Experimental Methodology

This study uses the SIMCA (SImulator for Multithreaded
Computer Architecture) simulator [6] to model the performance
effects of incorporating the WEC into the STA. This simulator is
based on the cycle-accurate SimpleScalar simulator, sim-
outorder, version 3.0 [7]. SIMCA is execution driven and
performs both functional and timing simulation.

4.1. TU parameters

Each TU uses a 4-way associative branch target buffer with
1024-entries and a fully associative speculative memory buffer
with 128 entries. The distributed L1 instruction caches are each
32KB and 2-way associative. The default unified L2 cache is

512KB, 4-way associative, with a block size of 128 bytes [8].
The L2 cache latency is 12 cycles. The round-trip memory
latency is 200 cycles. The L1 cache parameters are varied as
described in Section 5. The L1 data cache latency is 1 cycle.

The time required to initiate a new thread (the fork delay) in
the STA includes the time required to copy all of the needed
global registers to a newly spawned thread’s local register file
and the time required to forward the program counter. We use a
fork delay of four cycles [2] in this study plus two cycles per
value to transfer data between threads after a thread has been
forked.

4.2. Benchmark Programs

Four SPEC2000 integer benchmarks (vpr, gzip, mcf, parser)
and two SPEC2000 floating-point benchmarks (equake, mesa)
are evaluated in this study. All of these programs are written in
C. The compiler techniques shown in Table 1 were used to
manually parallelize these programs for execution on the STA.
The loops chosen for parallelization were identified with run-
time profiling as the most time-consuming loops in each
program. Table 2 shows the fraction of each program that we
were able to parallelize.

Table 1. Program transformations used in manually
transforming the code to the thread-pipelining execution
model.

Table 2. The dynamic instruction counts of the benchmark
programs used in this study, and the fraction of these
instructions that were executed in parallel.

The GCC compiler, along with modified versions of the GAS

assembler and the GAD loader from the Simplescalar suite, were
used to compile the parallelized programs. The resulting
parallelized binary code was then executed on the simulator.
Each benchmark was optimized at level O3 and run to
completion. To keep simulation times reasonable, the

Transformations
164.
gzip

175.
vpr

197.
parser

181.
mcf

183.
equake

177.
mesa

Loop Coalescing a
Loop Unrolling a a a

Statement Reordering a a a a

Bench
-mark

Suite/
Type

Input
Set

Whole
Benchmark
Instruction

(M)

Targeted
loops

Instruction
(M)

Fraction
Parallelized

175.
vpr

SPEC2000
/INT

SPEC
test 1126.5 97.2 8.6%

164.
gzip

SPEC2000
/INT

Minne
-SPEC
large

1550.7 243.6 15.7%

181.
mcf

SPEC2000
/INT

Minne
-SPEC
large

601.6 217.3 36.1%

197.
parser

SPEC2000
/INT

Minne
-SPEC
medium

514.0 88.6 17.2%

183.
equake

SPEC2000
/FP

Minne
-SPEC
large

716.3 152.6 21.3%

177.
mesa

SPEC2000
/FP

SPEC
test 1832.1 319.0 17.3%

MinneSPEC [9] reduced input sets were used for several of the
benchmarks.

4.3. Processor Configurations

The following STA configurations are simulated to determine
the performance impact of executing wrong-path and wrong-
thread loads, and the performance improvements attributable to
the WEC.

orig: This is the baseline supertheaded architecture described
in the previous sections.

vc: This configuration adds a small fully-associative victim
cache [5] in parallel with the L1 data cache to the orig
configuration.

wp: This configuration adds more aggressive speculation to a
TU’s execution as described in Section 3.1.1. It is a good test of
how the execution of the loads down the wrong branch path
affects the memory system. The thread-level speculation,
however, remains the same as in the orig configuration.

wth: This configuration is described in detail in Section
3.1.2. Since each thread’s store data is put into the speculative
memory buffer during a thread’s execution, and wrong threads
cannot execute their write-back stages, no wrong thread store
data alters the memory system. The speculative load execution
within a correct TU (superscalar core) remains the same in this
configuration as in the orig configuration.

wth-wp: This is a combination of the wp and wth
configurations.

wth-wp-vc: This configuration is the wth-wp configuration
with the addition of a victim cache. It is used to compare against
the performance improvement made possible by caching the
wrong-path and wrong-thread loads in the WEC.

wth-wp-wec: This is the wth-wp configuration with the
addition of a small, fully associative WEC in parallel with each
TU’s L1 data cache. The details of the WEC are given in Section
3.2.1.

nlp: This configuration implements next -line tagged
prefetching [10] with a fully associative prefetch buffer, but
without any other form of speculative execution. A prefetch is
initiated on a miss and on the first hit to a previously prefetched
block. The results of these prefetches are put into the prefetch
buffer. Tagged prefetching has previously been shown to be
more effective than prefetching only on a miss [11]. We used
this configuration to compare against the ability of the WEC to
successfully prefetch blocks that will be used by subsequently
executed loads issued from a correct execution path.

5. Evaluation of Simulation Results

We first examine the baseline performance of the STA
followed by an evaluation of the performance of the WEC when
using different numbers of TUs. The effects of wrong execution,
both with and without a WEC, on the performance of the STA
are subsequently examined. We also study the sensitivity of the
WEC to several important memory system parameters and
analyze the reduction in the number of L1 data cache misses and
the increase in the memory traffic due to the WEC.

The overall execution time is used to determine the
percentage change in performance of the different configurations
tested relative to the execution time of the baseline
configuration. Average speedups are calculated using the

execution time weighted average of all of the benchmarks [12].
This weighting gives equal importance to each benchmark
program independent of its total execution time.

5.1. Baseline Performance of the Superthreaded
Architecture

The system parameters used to test the baseline performance,
and to determine the amount of parallelism actually exploited in
the benchmark programs [13], are shown in Table 3. The size of
the distributed 4-way associative L1 data cache in each TU is
scaled from 2k to 32k as the number of TUs is varied to keep the
total amount of L1 cache in the system constant at 32K.

Table 3. Simulation parameters used for each TU

The baseline for these initial comparisons is a single-thread,

single-issue processor, which does not exploit any parallelism.
The single-thread-unit, sixteen-issue processor corresponds to a
very wide issue superscalar processor that is capable of
exploiting only instruction-level parallelism. In the 16TU STA
processor, each thread can issue only a single instruction per
cycle. Thus, this configuration exploits only thread-level
parallelism. The other configurations exploit a combination of
both instruction- and thread-level parallelism. Note that the total
amount of parallelism available in all of these configurations is
constant at 16 instructions per cycle.

Figure 5 shows the amount of instruction- and thread-level
parallelism in the parallelized portions of the benchmarks to
thereby compare the performance of the STA processor with a
conventional superscalar processor. The single TU configuration
at the left of each set of bars is capable of issuing 16 instructions
per cycle within the single TU. As you move to the right within
a group, there are more TUs, but each can issue a proportionally
smaller number of instructions per TU so that the total available
parallelism is fixed at 16 instructions per cycle.

In these baseline simulations, 164.gzip shows high thread-
level parallelism with a speedup of 14x for the 16TU X 1-issue
configuration. A 1TU X 16-issue configuration gives a speedup
less than 4x when executing this program. 175.vpr appears to
have more instruction-level than thread-level parallelism since
the speedup of the parallelized portion of this program decreases
as the number of TUs increases. For most of the benchmarks, the
performance tends to improve as the number of TUs increases.
This behavior indicates that there is more thread-level
parallelism in the parallelized portions of the benchmark
programs than simple instruction-level parallelism.

In the cases where the pure superscalar model achieves the
best performance, it is likely that the clock cycle time of the very
wide issue superscalar processor would be longer than the
combined models or the pure STA model. On average, we see
that the thread-level parallelization tends to outperform the pure
instruction-level parallelization.

of TUs
Issue rate

1
1

1
16

2
8

4
4

8
2

16
1

Reorder buffer size 8 128 64 32 16 8
INT ALU 1 16 8 4 2 1

INT MULT 1 8 4 2 1 1
FP ALU 1 16 8 4 2 1

FP MULT 1 8 4 2 1 1
L1 data cache size (K) 2 32 16 8 4 2

0
2
4
6
8

10
12
14
16

17
5.v

pr

16
4.g

zip

18
1.m

cf

183
.eq

uak
e

19
7.p

ars
er

17
7.m

es
a

av
era

ge

sp
ee

d
u

p

1TU

2TU

4TU

8TU

16TU

Figure 5. Performance of the STA processor for the
parallelized portions of the benchmarks with the hardware
configurations shown in Table 3. The baseline configuration
is a single-threaded, single-issue processor.

5.2. Performance of the superthreaded processor
with the WEC

Based on the results in the previous section, and considering
what is expected for future processor development, we use eight
TUs, where each TU is an 8-issue out-of-order processor, in the
remainder of the study. In some of the experiments, however,
we vary the number of TUs as noted to study the impact of
varying the available thread-level parallelism on the
performance of the WEC.

Each of the TUs has a load/store queue size of 64 entries. The
reorder buffer also has 64 entries. The processor has 8 integer
ALU units, 4 integer multiply/divide units, 8 floating-point (FP)
adders and 4 FP multiply/divide units. The default L1 data cache
in each TU is 8KB, direct-mapped, with a block size of 64 bytes.
The default WEC has 8 entries and is fully associative with the
same block size as the L1 data cache.

Since our focus is on improving the performance of on-chip
direct-mapped data caches in a speculative multithreaded
architecture, most of the following comparisons for the WEC are
made against a victim cache. We also examine the prefetching
effect of wrong execution with the WEC by comparing it with
next -line tagged prefetching.

5.2.1. The Effect of Varying the Number of TUs

Figure 6 shows the performance of the wth-wp-wec
configuration as the number of TUs is varied. These results are
for the entire benchmark program, not just the parallelized loops.
The baseline is the orig configuration with a single TU. The
speedup of the wth-wp-wec configuration can be as much as
39.2% (183.equake). For most of the benchmarks, even a two-
thread-unit wth-wp-wec performs better than the orig
configuration with 16 TUs.

The single-thread wth-wp-wec configuration shows that the
WEC can improve the performance significantly, up to 10.4%
for 183.equake, for instance. When more than one TU is used,
we see even greater improvements with the WEC due to the
larger number of wrong loads issued by executing the wrong
threads. For example, in Figure 7, we see that the performance

of 181.mcf improves from 6.2% compared to the baseline
configuration when executing with a single TU, to a 20.2%
increase over the baseline configuration when using 16 TUs. On
average, the performance of the wth-wp-wec configuration
increases with the number of threads because the total size of the
WEC and the L1 cache increases, although the ratio of the WEC
size to the L1 data cache size remains constant. Once the total
cache and WEC sizes match the benchmark’s memory footprint,
the performance improvement levels off.

The 175.vpr program slows down on the orig configuration
because there is not enough overlap among threads when using
more than one TU. As a result, the superthreading overhead
overwhelms the benefits of executing the program in parallel.
The 181.mcf program also shows some slowdown for two and
four TUs because of contention for TUs.

-10

-5

0

5

10

15

20

25

30

35

40

175
.vp

r

164
.gz

ip
181

.mcf

19
7.p

ars
er

183
.eq

uak
e

177
.mesa

ave
rag

e

re
la

tiv
e

sp
ee

du
p

(%
)

2TU org

4TU org

8TU org

16TU org

1TU wec

2TU wec

4TU wec

8TU wec

16TU wec

Figure 6. Performance of the wth-wp-wec configuration for
the entire benchmark programs as the number of TUs is
varied. The baseline processor is a STA processor with a
single TU.

0

2

4

6

8

10

12

14

16

18

20

22

175
.vp

r

16
4.g

zip

181
.mcf

197
.pa

rse
r

183
.eq

uak
e

177
.mesa

ave
rag

e

re
la

tiv
e

sp
ee

du
p

(%
)

1TU wec

2TU wec

4TU wec

8TU wec

16TU wec

Figure 7. Performance of the wth-wp-wec configuration on
top of the parallel execution. The baseline processors are
one- to 16-TU STA processors with the number of TUs
corresponding to the number of threads used in the wth-wp-
wec configuration.

5.2.2. Performance Improvements Due to the WEC

The previous section showed the performance improvement
obtained by executing wrong-path and wrong-thread loads with
a WEC in each TU as the total number of available TUs was
varied. Figure 8, in contrast, compares the relative speedup

obtained by all of the different processor configurations
described in Section 4.2 compared to the baseline processor,
orig. All of these configurations use eight TUs.

 This figure shows that the combination of wrong execution
plus the WEC (wth-wp-wec) gives the greatest speedup of all the
configurations tested. The use of only wrong-path or wrong-
thread execution alone or in combination (wp, wth, or wth-wp)
provides very little performance improvement. When they are
used together (wth-wp), for instance, the best speedup is only
2.2% (for 183.equake) while there is some slowdown for
177.mesa. It appears that the cache pollution caused by
executing the wrong loads in these configurations offsets the
benefit of their prefetching effect. When the WEC is added,
however, the cache pollution is eliminated which produces
speedups of up to 18.5% (181.mcf), with an average speedup of
9.7%.

-2

0

2

4

6

8

10

12

14

16

18

20

175
.vp

r

16
4.g

zip

181
.mcf

19
7.p

ars
er

183
.eq

uak
e

177
.mesa

ave
rag

e

re
la

tiv
e

sp
ee

du
p

(%
)

vc

wp

wth

wth-wp

wth-wp-vc

wth-wp-wec

nlp

Figure 8. Relative speedups obtained by the different
processor configurations with eight TUs. The baseline is the
original superthreaded parallel execution with eight TUs.

Compared to a victim cache of the same size, the
configurations with the WEC show substantially better
performance. While the WEC (wth-wp-wec) and the victim
cache (wth-wp-vc) both reduce conflict misses, the WEC further
eliminates the pollution caused by executing loads from the
wrong path and the wrong thread.

In addition to this indirect prefetching effect, the WEC also
stores the results of the next -line prefetches initiated by a hit to a
block in the WEC prefetched through a wrong execution. With
both the indirect prefetching and the explicit prefetching, the
wth-wp-wec performs better than conventional next -line tagged
prefetching (nlp) with the same size prefetch buffer. Note that
the extra hardware cost of both configurations would be
approximately the same. On average, conventional next -line
prefetching (nlp) produces a speedup of 5.5%, while the WEC
(wth-wp-wec) produces a speedup of 9.7%.

5.3. Parameter Sensitivity Analysis

In this section, we study the effects of varying the L1 data
cache associativity, the L1 data cache size, and the WEC size on
the performance of the WEC. Each simulation in this section
uses eight TUs.

5.3.1. Impact of the L1 Data Cache Associativity

Increasing the L1 cache associativity typically tends to reduce
the number of L1 misses for both correct execution [14] and
wrong execution [15]. The reduction in misses in the wrong
execution paths reduces the number of indirect prefetches issued
during wrong execution, which then reduces the performance
improvement from the WEC, as shown in Figure 9.

The baseline configuration is the orig processor with a direct-
mapped and 4-way associative L1 data corresponding to the
direct-mapped and 4-way WEC results. When the associativity
of the L1 cache is increased, the speedup obtained by the victim
cache (vc) disappears. However, the configuration with the
wrong-execution cache, wth-wp-wec, still provides significant
speedup. This configuration also substantially outperforms the
wth-wp-vc configuration, which issues loads from the wrong
execution paths, but uses a standard victim cache instead of the
WEC.

0

2

4

6

8

10

12

14

16

18

20

175
.vp

r

16
4.g

zip

181
.mcf

197
.pa

rse
r

183
.eq

uak
e

177
.mesa

ave
rag

e

re
la

tiv
e

sp
ee

du
p

(%
)

1way vc

1way wth-wp-vc

1way wth-wp-wec

4way vc

4way wth-wp-vc

4way wth-wp-wec

Figure 9. Sensitivity of an eight-TU STA processor with 8-
issue superscalar cores and a WEC as the associativity of
the L1 data cache is varied (direct-mapped, 4-way).

5.3.2. The Effect of the L1 Data Cache Size

Figure 10 shows the normalized execution times for the orig
and wth-wp-wec configurations when the L1 data cache size is
varied. We see that the relative speedup produced by the WEC
(wth-wp-wec) decreases as the L1 data cache size is increased.
However, the WEC size is kept constant throughout this group
of simulations so that the relative size of the WEC compared to
the L1 data cache is reduced as the L1 size is increased. With a
larger L1 cache, the wrong execution loads produce fewer
misses compared to the configurations with smaller caches. The
smaller number of misses reduces the number of potential
prefetches produced by the wrong execution loads, which
thereby reduces the performance impact of the WEC.

For all of the test programs, a small 8-entry WEC with an 8K
L1 data cache exceeds the performance of the baseline processor
(orig) when the cache size is doubled, but without the WEC.
Furthermore, on average, the WEC with a 4K L1 data cache
performs better than the baseline processor with a 32K L1 data
cache. These results suggest that incorporating a WEC into the
processor is an excellent use of chip area compared to simply
increasing the L1 data cache size.

0.75

0.8

0.85

0.9

0.95

1

175
.vp

r

16
4.g

zip

181
.mcf

197
.pa

rse
r

183
.eq

uak
e

177
.mesa

ave
rag

e

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

orig 4k

orig 8k

orig 16k

orig 32k

wth-wp-wec 4k

wth-wp-wec 8k

wth-wp-wec 16k

wth-wp-wec 32k

Figure 10. Sensitivity of an eight-TU STA processor with 8-
issue superscalar cores and a WEC as the L1 data cache size
is varied (4k, 8k, 16k, 32k).

5.3.3. The Effect of the WEC Size

Figure 11 shows that, in general, the configuration that is
allowed to issue loads from both the wrong paths and the wrong
threads with a 4-entry victim cache (wth-wp-vc) outperforms the
orig configuration with a 16-entry victim cache. Furthermore,
replacing the victim cache with a 4-entry WEC causes the wth-
wp-wec configuration to outperform the configuration with a 16-
entry victim cache, wth-wp-vc. This trend is particularly
significant for 164.gzip, 181.mcf and 183.equake.

Figure 12 compares the WEC approach to a tagged
prefetching configuration that uses a prefetch buffer that is the
same size as the WEC. It can be seen that the wth-wp-wec
configuration with an 8-enty WEC performs substantially better
than traditional next -line prefetching (nlp) with a 32-entry
prefetch buffer. This result indicates that the WEC is actually a
more efficient prefetching mechanism than a traditional next -line
prefetching mechanism.

0

2

4

6

8

10

12

14

16

18

20

22

175
.vp

r

16
4.g

zip

18
1.m

cf

19
7.p

ars
er

183
.eq

uak
e

177
.mesa

av
era

ge

re
la

tiv
e

sp
ee

du
p

(%
)

vc 4

vc 8

vc 16

wth-wp-vc 4

wth-wp-vc 8

wth-wp-vc 16

wth-wp-wec 4

wth-wp-wec 8

wth-wp-wec 16

Figure 11. Sensitivity of an eight-TU STA processor with 8-
issue superscalar cores and a WEC to changes in the size of
the WEC (4, 8, 16 entries) compared to a vc.

0

4

8

12

16

20

24

175
.vpr

164
.gz

ip
181

.mcf

197
.pa

rse
r

183
.eq

uak
e

177
.mesa

ave
rag

e

re
lat

ive
 sp

ee
du

p
(%

) nlp 8

nlp 16

nlp 32

wth-wp-wec 8

wth-wp-wec 16

wth-wp-wec 32

Figure 12. Sensitivity of an eight-TU STA processor with 8-
issue superscalar cores and a WEC to changes in the size of
the WEC (4, 8, 16 entries) compared to nlp.

5.4. L1 Changes in Data Cache Traffic and Misses

Figure 13 shows that the WEC can significantly reduce the
number of misses in the L1 data cache. This reduction is as high
as 73% for 177.mesa, although the miss count reduction for
181.mcf is not as significant as the others. This figure also shows
that this reduction in the number of L1 misses comes at the cost
of an increase in the traffic between the processor and the L1
cache. This increase in cache traffic is a side effect of issuing
more load instructions from both the wrong path and wrong
threads. This traffic increase can be as high as 30% in 175.vpr,
with an average increase of 14%. This small average increase in
cache traffic would appear to be more than offset by the increase
in performance provided by using the WEC, though.

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

17
5.v

pr

16
4.g

zip

181
.mcf

19
7.p

ars
er

18
3.e

qu
ake

177
.mesa

ave
rag

e

%

Data L1
traffic
increase

Data L1
miss count
reduction

Figure 13. Increases in the L1 cache traffic and the reduction
in L1 misses.

6. Related Work

Pierce and Mudge [16] suggested that the additional loads
issued from mispredicted branch paths could provide some
performance benefits and proposed [17] a wrong-path instruction
prefetching scheme in which instructions from both possible
branch paths are prefetched. Sendag et al [15] examined the
impact of wrong-path execution on the data cache in a single-
threaded processor. To limit the performance degradation caused
by cache pollution, they proposed the Wrong Path Cache, which
is a combination of a prefetch buffer and a victim cache [5].

While there has been no previous work studying the
execution of loads from a mispredicted thread in a multithreaded

architecture, a few studies have examined prefetching in the
Simultaneous MultiThreading (SMT) architecture. Collins et al
[18] studied the use of idle thread contexts to perform
prefetching based on a simulation of the Itanium processor
extended to simultaneous multithreading. Their approach
speculatively precomputed future memory accesses using a
combination of software, existing Itanium processor features,
and additional hardware. Similarly, using idle threads on an
Alpha 21464-like SMT processor to pre-execute speculative
addresses, and thereby prefetch future values to accelerate the
main thread, also has been proposed [19].

These previous studies differ from our work in several
important ways. First, this study extends these previous
evaluations of single-threaded and SMT architectures to a
concurrent multithreading architecture. Second, our mechanism
requires only a small amount of extra hardware; no extra
software support is needed. Third, while we also use threads that
would be idle if there was no wrong thread execution, our goal is
not to help the main thread’s execution, but rather, to accelerate
the future execution of the currently idle threads.

7. Conclusions

In this study, we have examined the effect of executing load
instructions issued from a mispredicted branch path (wrong-
path) or from a misspeculated thread (wrong-thread) on the
performance of a speculative multithreaded architecture. We
find that we can reduce the cache misses for subsequent
correctly predicted paths and threads by continuing to execute
the mispredicted load instructions even after the instruction- or
thread-level control speculation is known to be incorrect.

Executing these additional loads causes some cache pollution
by fetching never needed blocks and by evicting useful blocks
needed for the later correct execution paths and threads. In order
to eliminate the potential pollution caused by the mispredicted
load instructions, we introduced the small, fully-associative
Wrong Execution Cache (WEC). Our simulation results show
that the WEC can improve the performance of a concurrent
multithreaded architecture up to 18.5% on the benchmark
programs tested, with an average improvement of 9.7%. This
performance improvement comes from reducing the number of
cache misses by, typically, 42-73%.

While this study has examined the effects of several
parameters on the performance of the WEC, there are still many
important factors left to be considered, such as the effects of
memory latency, the block size, and the relationship of the
branch prediction accuracy to the performance of the WEC.

The WEC proposed in this work is one possible structure for
exploiting the potential benefits of executing mispredicted load
instructions. Although this current study is based on a
multithreaded architecture that exploits loop level parallelism,
the ideas presented in this paper can be easily used in all types of
multithreaded architectures executing general workloads.

Acknowledgements

This work was supported in part by National Science
Foundation grants EIA-9971666 and CCR-9900605, IBM,
Compaq's Alpha Development Group, and the Minnesota
Supercomputing Institute.

References

[1] T. Ungerer, B. Robic and J. Silc. “Multithreaded Processors,” The

Computer Journal, Vol.45, No.3, 2002.
[2] J-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P-C. Yew, “The

Superthreaded Processor Architecture,” IEEE Transactions on
Computers, Special Issue on Multithreaded Architectures and
Systems, pp. 881-902, September, 1999.

[3] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. “Multiscalar
processors,” Proceedings of the 22nd Annual International
Symposium on Computer Architectures, pages 414-425, June 22-
24, 1995

[4] J. G. Steffan and T. C. Mowry. “The potential for thread-level
data speculation in tightly-coupled multiprocessors,” Technical
report, Computer Science Research Institute, University of
Toronto, February 1997. Technical Report CSRI-T R-350.

[5] N. P. Jouppi, “Improving Direct -Mapped Cache Performance by
the Addition of a Small Fully-associative Cache and Prefetch
Buffers,” Proc. 17th Annual International Symposium on
Computer Architecture, Seattle, WA, May 1990, pp. 364-373.

[6] J. Huang, “The SImulator for Multithreaded Computer
Architecture,” Laboratory for Advanced Research in Computing
Technology and Compilers Technical Report No. ARCTiC 00-05,
June, 2000.

[7] D. C. Burger, T.M. Austin, and S. Bennett, “Evaluating future
Microprocessors: The SimpleScalar Tool Set,” Technical Report
CS-TR-96-1308, University of Wisconsin-Madison, July 1996.

[8] Ying Chen, Resit Sendag, and David J. Lilja, “Using Incorrect
Speculation to Prefetch Data in a Concurrent Multithreaded
Processor,” Laboratory for Advanced Research in Computing
Technology and Compilers Technical Report No. ARCTiC 02-09,
October, 2002

[9] AJ KleinOsowski, and D. J. Lilja “MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer
Architecture Research,” Computer Architecture Letters, Volume
1, pp. 10-13, May 2002.

[10] J. E. Smith, W.-C. Hsu, "Prefetching in Supercomputer
Instruction Caches," In Proceedings of Supercomputing 92, pp.
588-597, 1992.

[11] S. P. VanderWiel and D. J. Lilja, “Data Prefetch Mechanisms,”
ACM Computing Surveys, Vol. 32, Issue 2, June 2000, pp.174-
199.

[12] D. J. Lilja, “Measuring Computer Performance,” Cambridge
University Press, 2000.

[13] J-Y. Tsai, Z. Jiang, E. Ness and P-C Yew. “Performance Study of
a Concurrent Multithreaded Processor,” the 4th Inernational
Symposium on High Performance Computer Architecture, Feb.
1998.

[14] A. J. Smith, “Cache Memories,” Computing Surveys, Vol. 14, No.
3, Sept. 1982, pp. 473-530.

[15] R. Sendag, D. J. Lilja, and S. R. Kunkel. “Exploiting the
Prefetching Effect Provided by Executing Mispredicted Load
Instructions,” ACM Euro-Par Conference, August 2002.

[16] J. Pierce and T. Mudge, “The effect of speculative execution on
cache performance,” IPPS 94, Int. Parallel Processing Symp.,
Cancun Mexico, pp. 172-179, Apr. 1994

[17] J. Pierce and T. Mudge, “Wrong-Path Instruction Prefetching,”
Proc. Of 29th Annual IEEE/ACM Symp. Microarchitecture
(MICRO-29), Dec. 1996, pp. 165-175

[18] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y-F. Lee, D.
Lavery, J. P. Shen. “ Speculative Precomputation: Long-range
Prefetching of Delinquent Loads,” in the 28th Annual
International Symposium on Computer Architecture, July 2001.

[19] Luk, H. K. “Tolerating memory latency through software-
controlled pre-execution in simultaneous multithreading
processors,” In Proc. of the 28th Annual International Symposium
on Computer Architectures, 2001

